Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 11 of 11 results
1.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
2.

Creating artificial signaling gradients to spatially pattern engineered tissues.

blue Cryptochromes Review
Curr Opin Biotechnol, 28 Sep 2022 DOI: 10.1016/j.copbio.2022.102810 Link to full text
Abstract: Artificially constructing a fully-fledged tissue - comprising multiple cell types whose identities and spatial arrangements reflect those of a native tissue - remains daunting. There has been impressive progress in generating three-dimensional cell cultures (often dubbed 'organoids') from stem cells. However, it is critical to appreciate that not all such three-dimensional cultures will intrinsically self-organize to spontaneously recreate native tissue architecture. Instead, most tissues in vivo are exogenously patterned by extracellular signaling gradients emanating from organizer cells located outside the tissue. Innovations to impose artificial signaling gradients - using microfluidics, optogenetics, or introducing organizer cells - could thus prove decisive to create spatially patterned tissues in vitro. Additionally, unified terminology to describe these tissue-like simulacra as 'aggregates', 'spheroids', or 'organoids' will be critical for the field.
3.

Optogenetic interrogation and control of cell signaling.

blue cyan green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Biotechnol, 11 Oct 2020 DOI: 10.1016/j.copbio.2020.07.007 Link to full text
Abstract: Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
4.

Optogenetics and biosensors set the stage for metabolic cybergenetics.

blue green near-infrared red UV violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains PAL Phytochromes UV receptors Review
Curr Opin Biotechnol, 11 Sep 2020 DOI: 10.1016/j.copbio.2020.07.012 Link to full text
Abstract: Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.
5.

Genetically-encoded biosensors for analyzing and controlling cellular process in yeast.

blue BLUF domains Cryptochromes Review
Curr Opin Biotechnol, 18 Jun 2020 DOI: 10.1016/j.copbio.2020.04.006 Link to full text
Abstract: Yeast has been a robust platform to manufacture a broad range of biofuels, commodity chemicals, natural products and pharmaceuticals. The membrane-bound organelles in yeast provide us the means to access the specialized metabolism for various biosynthetic applications. The separation and compartmentalization of genetic and metabolic events presents us the opportunity to precisely control and program gene expression for higher order biological functions. To further advance yeast synthetic biology platform, genetically encoded biosensors and actuators haven been engineered for in vivo monitoring and controlling cellular processes with spatiotemporal resolutions. The dynamic response, sensitivity and operational range of these genetically encoded sensors are determined by the regulatory architecture, dynamic assemly and interactions of the related proteins and genetic elements. This review provides an update of the basic design principles underlying the allosteric transcription factors, GPCR and optogenetics-based sensors, aiming to precisely analyze and control yeast cellular processes for various biotechnological applications.
6.

Flux controlling technology for central carbon metabolism for efficient microbial bio-production.

blue green Cyanobacteriochromes LOV domains Review
Curr Opin Biotechnol, 30 May 2020 DOI: 10.1016/j.copbio.2020.04.003 Link to full text
Abstract: Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
7.

Illuminating developmental biology with cellular optogenetics.

blue Cryptochromes LOV domains Review
Curr Opin Biotechnol, 2 Mar 2018 DOI: 10.1016/j.copbio.2018.02.003 Link to full text
Abstract: In developmental biology, localization is everything. The same stimulus-cell signaling event or expression of a gene-can have dramatically different effects depending on the time, spatial position, and cell types in which it is applied. Yet the field has long lacked the ability to deliver localized perturbations with high specificity in vivo. The advent of optogenetic tools, capable of delivering highly localized stimuli, is thus poised to profoundly expand our understanding of development. We describe the current state-of-the-art in cellular optogenetic tools, review the first wave of major studies showcasing their application in vivo, and discuss major obstacles that must be overcome if the promise of developmental optogenetics is to be fully realized.
8.

Synthetic biological approaches to optogenetically control cell signaling.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Biotechnol, 14 Jul 2017 DOI: 10.1016/j.copbio.2017.06.010 Link to full text
Abstract: Precise spatial and temporal control of cellular processes is in life sciences a highly sought-after capability. In the recent years, this goal has become progressively achievable through the field of optogenetics, which utilizes light as a non-invasive means to control genetically encoded light-responsive proteins. The latest optogenetic systems, such as those for control of subcellular localization or cellular decision-making and tissue morphogenesis provide us with insights to gain a deeper understanding of the cellular inner workings. Besides, they hold a potential for further development into biomedical applications, from in vitro optogenetics-assisted drug candidate screenings to light-controlled gene therapy and tissue engineering.
9.

How to control cyclic nucleotide signaling by light.

blue red BLUF domains LOV domains Phytochromes Review
Curr Opin Biotechnol, 10 Mar 2017 DOI: 10.1016/j.copbio.2017.02.014 Link to full text
Abstract: Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
10.

Optogenetic methods in drug screening: technologies and applications.

blue BLUF domains Review
Curr Opin Biotechnol, 5 Mar 2017 DOI: 10.1016/j.copbio.2017.02.006 Link to full text
Abstract: The optogenetic revolution enabled spatially-precise and temporally-precise control over protein function, signaling pathway activation, and animal behavior with tremendous success in the dissection of signaling networks and neural circuits. Very recently, optogenetic methods have been paired with optical reporters in novel drug screening platforms. In these all-optical platforms, light remotely activated ion channels and kinases thereby obviating the use of electrophysiology or reagents. Consequences were remarkable operational simplicity, throughput, and cost-effectiveness that culminated in the identification of new drug candidates. These blueprints for all-optical assays also revealed potential pitfalls and inspire all-optical variants of other screens, such as those that aim at better understanding dynamic drug action or orphan protein function.
11.

The use of light for engineered control and reprogramming of cellular functions.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 26 Dec 2011 DOI: 10.1016/j.copbio.2011.12.004 Link to full text
Abstract: Could combating incurable diseases lie in something as simple as light? This scenario might not be too farfetched due to groundbreaking research in optogenetics. This novel scientific area, where genetically encoded photosensors transform light energy into specifically engineered biological processes, has shown enormous potential. Cell morphology can be changed, signaling pathways can be reprogrammed, and gene expression can be regulated all by the control of light. In biomedical applications where precise cell targeting is essential, non-invasive light has shown great promise. This article provides a summary of the recent advances that utilize light in genetic programming and precise control of engineered biological functions.
Submit a new publication to our database